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Computational studies of the three-dimensional, hypersonic flow of rarelied, strongly 
stratified gas past an obstacle are carried out, the incident gas stratilied in a direction trans- 
verse to the mean flow. An “N-body” computational code based on Monte Carlo techniques is 
developed for these purposes. Our primary interest is centered on the three-dimensional effects 
induced in the gas flow by a solid obstacle comparable in size to the gas scale height and 
collisional mean free path. Of the different types and shapes of obstacles studied, we focus 
herein on a cylindrical obstacle, assumed to be a diffuse elastic scatterer. The cylindrical 
obstacle is a short uniform pipe whose upstream end is fully open, facing directly into the 
flow, and whose downstream end is covered by a flat circular endplate containing an “orifice” 
at its center. For different choices of “oritice” diameter, the obstacle serves as a useful model of 
an impact probe (closed orifice) or scoop (closed, partially open, or fully open orifice) in a 
rapidly rotating strongly stratified gas (as in a gas centrifuge). The computed results show that 
the obstacle (in all cases studied, spanning the range from completely closed orifice to fully 
open oritice) induces large systematic motions in the gas, with strong radially inward driven 
flow in the direction of the gradient of density stratilication, and correspondingly large density 
perturbations in these regions. The radial inflow of gas is prominent not only in the 
neighborhood of the obstacle and downstream from it but also at considerable distances 
radially inward from it and at z-heights well above and below. The radially driven gas inflow 
is a striking three-dimensional effect induced when strongly stratified gas impinges upon an 
obstacle; it constitutes a major characteristic common to all the hypersonic, stratified flows 
studied despite differences in Mach number and gas scale height and regardless of whether the 
obstacle is a flat plate, a “long” solid rod, or a “short” cylindrical pipe. The resultant density 
distribution of the obstructed molecular gas exhibits a striking “asymmetry” in the (radial) 
direction of the gradient of density stratitication but retains “symmetry” in the z-direction per- 
pendicular to the stratification gradient. The “r-asymmetry” is in striking contrast to the 
characteristic rotation-symmetry exhibited about the obstructing pipe’s central axis in 
corresponding cases of unstratified flows investigated. The bow shock that forms near the 
obstacle exhibits a characteristic thickness that broadens with mean free path in the direction 
of the gradient of density stratitication and a characteristic shape that is substantially warped 
(in that direction) from the paraboloid-shaped bow shock that forms (with axis of revolution 
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coincident with the pipe’s central axis) in corresponding cases of unstratified flows. The 
redirection of the gas flow at the shock away from the direction of the incident mean flow is 
particularly strong along that portion of the warped bow shock most closely aligned with the 
(radial) direction of the stratification gradient; the postshock density ridge in this direction is 
masked considerably by the strongly stratified density background. c 1988 Academic Press. Inc. 

I. INTRODUCTION 

When simulating physical conditions in gaseous systems with rarefied or quasi- 
rarefied/continuum regimes, the familiar fluid equations (e.g., Navier-Stokes 
equations) are not very useful, because any small (computational) volume element 
will be influenced by all other elements within a few mean free paths in addition to 
the elements which border it. For such situations; an N-body particle method of 
computation is usually more useful. Our computational studies build upon Monte 
Carlo particle dynamics and, in particular, on the Direct Simulation Monte Carlo 
(DSMC) method described by Bird [l, 21. In this method a gas is simulated by a 
number of particles, typically thousands to tens of thousands, each of which 
represents a very large number of identical gas molecules. By following the 
trajectories of these particles and determining the local averages of their number 
densities, velocities, and other properties throughout the computational volume, we 
may estimate the spatial variations of density, pressure, and mean velocity which 
would be exhibited by the gas. Each particle is subject to the same forces felt by a 
real molecule with the same location and velocity, colliding with other particles at 
the same rate as do real molecules. 

In this work we shall use Monte Carlo particle dynamics to study the interaction 
of a stratified gas impinging hypersonically upon a solid body comparable in size to 
the gas scale height. The problem, difficult as it sounds, is made still more com- 
plicated by the fact that the collisional mean free path of the gas molecules is 
similar to the stratification scale length. Traditional methods of computing gas 
properties all fail in this regime. If the mean free path were much longer than the 
other relevant length scales., the gas could be treated as if it were collisionless and 
its properties calculated from the mean trajectories of noninteracting molecules. At 
the other limiting extreme, a dense gas with short mean free path could be treated 
by the traditional continuum fluid-dynamical equations. In the situation under con- 
sideration, however, it is necessary to use a computational method which takes into 
account both interactions between molecules and the smoothing effects induced by 
the long mean free path. 

This problem has been little studied in part because there are not many natural 
situations in which this combination of parameters occurs. Rapidly rotating gas 
centrifuges, however, provide one practical and important situation where these 
particular relative length scales are achieved. In a gas centrifuge, the density scale 
height may be of order 1 cm, while the mean free path, much shorter at the wall, 
may increase to centimeter scales or greater near the center. When a solid object of 
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similar size, such as an impact probe or scoop, is introduced into the rotor and held 
fixed in the laboratory frame, the hypothesized hypersonic relative velocities are 
readily attained. 

In this paper, the intent is not to limit ourselves to gas centrifuge flows only. 
Rather we develop our Monte Carlo computational code with more general 
applicability; it is in this broader perspective that we describe our computational 
studies of three-dimensional hypersonic flows of rarefied, strongly stratified gas past 
an obstacle. Section II includes a general description of Monte Carlo particle 
dynamics and the computational code development necessary for application to 
rarefied, strongly stratified gas flows. Section III describes in some detail the results 
of our computational studies in two representative cases for which the obstacle 
adopted is a short, uniform, cylindrical pipe whose upstream end is fully open, fac- 
ing directly into the flow, and whose downstream end is covered by a flat circular 
endplate containing an “orifice” at its center. For different choices of “orifice” 
diameter, this short cylindrical pipe serves as a useful model of an impact probe 
(closed orifice) or scoop (closed, partially open, or full-open orifice) in hypersonic, 
stratified gas flows. The two representative cases are those of “completely closed” 
orifice and “fully open” orifice, which together bound the full range of obstructed 
hypersonic, stratified gas flows of interest. We conclude in Section IV with a sum- 
mary of the results for the hypersonic, stratified gas flows studied, a comparison 
with corresponding results for hypersonic, unstratilied gas flows, and a discussion of 
their general applicability. 

II. COMPUTATIONAL METHOD 

The random component of Monte Carlo particle dynamics arises in the treatment 
of collisions. The frequency with which a single molecule in a simple, equilibrium 
gas collides with any other molecule is given by 

v = nac, = C,/(J2 A), (1) 

where n is the molecular number density, c, is the relative velocity between two 
molecules, g is the collision cross section (which may be a function of c,), 1 is the 
mean free path, and bars represent averages over all relative velocities. Since we 
want the particles in our computational model to have the same A (and v) as real 
molecules, and the particle number density is reduced by a large factor, N, below 
the molecular gas density, the cross section of the computer particles in the com- 
putational model must be increased by the same factor of N. 

It would be conceptually simple but computationally burdensome to keep track 
of the separations between all pairs of computer particles and simulate a collision 
whenever two particles come close together. This technique would require a large 
number of computational steps proportional to the square of the number of par- 
ticles in order to check all possible collisions, which becomes extremely time con- 
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suming in large simulations. The alternative used by the Monte Carlo method 
preserves the average number of collisions per particle while performing a number 
of computational steps linearly proportional to particle number. In this method, we 
divide our computational volume into a large number of small spatial cells, each of 
which ideally should contain a fairly large number of particles. If the density and 
velocity field of the gas is nearly uniform throughout the cell, it is permissible to 
apply the mean collision rate deduced from Eq. (1) to all particles within the ceil. 

For every cell and time step in our computation, we randomly choose pairs of 
particles and decide whether they collide or not on the basis of their relative 
velocity, c,. Their collision probability, c,o,(c,), is divided by a maximum value 
(Cr~,hnax 9 and the ratio is compared to a random number. If the random number is 
less than the ratio, we let the pair collide. When a pair of particles collides, a time 
counter for the cell is increased by an amount 

AZ = 2V/(k*Nc,a), (2) 

where V is the cell volume, k the number of particles in the cell, and N the number 
of molecules represented by each particle. (Note that Nk/V is the local gas den- 
sity, n) More collisions are sought until the cell’s time counter equals At, the 
duration of our computational time step. Thus the total number of collisions which 
have occurred in the cell during that time step is 

N,,,,(At)=$Nk*FJV=$knT;iT. 

Since each collision involves two particles, the average collision rate per particle is 
now in agreement with Eq. (1). 

This Monte Carlo method is usually less time consuming than the deterministic 
method of seeking collisions, but it has disadvantages of its own. The random 
choice of particle pairs from a cell is based on assumed near-uniformity of the gas 
within the cell; this will require that a great number of cells be used when the mean 
density or velocity is expected to vary greatly throughout a computational volume 
(of course, this is also true for continuum fluid computations). Because it is 
desirable that particles not collide more than once per time step, our time steps 
ideally should be less than l/v, which may be quite small in some regions of a 
volume whose density is very nonuniform. 

When two particles collide, their post-interaction velocities will depend on the 
interaction potential assumed and on their impact parameter (which may be ran- 
domly chosen). In the simulations described below, we have assumed hard-sphere 
scattering, which gives isotropic, elastic scattering of the particles’ relative velocity 
vector and has a velocity-independent cross section, 0. More complicated potentials 
may be used, if desired, and the preceding formulae remain appropriate [3]. 

This Monte Carlo method must be refined in several ways for our simulations of 
a strongly stratified gas, principally because the gas density can vary over many 
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orders of magnitude throughout the region of interest. It is possible to show, for 
example, for an isothermal gas inside a cylinder rotating with angular velocity Q 
and a no-slip outer wall at radius R, that the phase-space particle density is propor- 
tional to 

f(r, v) a exp 
[ 

- uf - (ue - rQ)* - ui + Q2r2 

24 I? 
where Us is the one-dimensional velocity dispersion. (This formula may be derived 
by assuming that gas molecules are reflected/emitted inward from a rotating, cylin- 
drical wall with a Maxwellian velocity distribution peaked at QRd; the velocity of a 
collisionless particle at any point in its trajectory can be determined from its 
velocity at the wall, and a coordinate transformation gives the distribution function, 
Eq. (4), in local coordinates.) Thus, we see that such “equilibrium” gas (i.e., the 
solution for no internal solid obstructions and uniform temperature kT=mo:) is 
everywhere a Maxwellian with no z (i.e., axial) or I3 dependence, mean velocity rQ8, 
and radially varying density: 

Note that the density can be normalized to some arbitrary reference radius r,, rather 
than the wall simply by replacing R and n(R) in Eq. (5) by r. and n(r,,). 

Since QR (= v,,,,) is generally much greater than ud for problems of practical 
interest, we expect the density to vary greatly throughout almost any com- 
putational volume we should wish to simulate. If we were to retain the same factor, 
N, for the number of molecules represented by a particle throughout our simulation 
region, we would have either an intractably large number of particles at large radii 
or a statistically small number at smaller radii. One solution [2] is to use different 
conversion factors at different radii, so that a particle at large r generally represents 
many more molecules than does a particle nearer the axis. Moreover, different 
cells may have different volumes, while we might want them all to contain 
approximately the same number of particles (which for computational efficiency, we 
want to be as small as can be consistent with reasonably good statistics). Bird [2] 
argues that this number of particles per cell may be allowed to become as small as 
10 to 12. If we want to choose a conversion factor, Nj, which will give a constant 
number, k’, of particles in each cell, i, for the ideal case of an unperturbed, 
isothermal stratified gas in “equilibrium,” this factor is obtained from 

Nik’ = 
I cell i 

X 
(Cax - 6) Q2 

2v: (6) 
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where dei and Azi are the angular and axial widths of the cell, rmax and rmln are its 
outer and inner radial boundaries, and r. is a reference radius (fixed for all cells in a 
given simulation). For non-ideal cases of practical interest, where gas flow may be 
perturbed by internal obstacles, the conversion factors are still calculated from 
Eq. (6) and the ratio of a cell’s actual particle number, ki, to the ideal, k’, equals 
the ratio of gas density to the idealized gas density specified by Eq. (5). The time 
counter Ari in each cell i for every pair of particles undergoing a collision with 
relative velocity c, is obtained from 

(ATi) ~ ’ = (AtI ~ ‘jce,,i nco~~ (dt)d3x=k.(~)(4JiC(r,)) 

X 
em - 4 Q2 

24 1 [ + exp (CL - 6) Q2 11 24 ’ (7) 

where ncoll(At) is the number of molecular collisions per unit volume in time At, 
and A(r,,) is the mean free path for the ideal case at the reference radius ro. 

This procedure becomes complicated when particles cross from one cell to 
another, if the new cell has a different factor N,. Each particle from cell i, 

representing Ni molecules, must become N,/N, particles in cell j to represent the 
same number of molecules. If this ratio is less than unity, we randomly choose 
either to accept the particle unchanged or to annihilate it, with the acceptance 
probability equal to N,/N,. If this ratio is greater than unity, we duplicate the par- 
ticle sufficient times to give mass conservation on the average. The duplicate par- 
ticles are spread out along the trajectory which the original particle follows through 
the new cell. The velocity of each duplicated particle is the same as that of the 
original particle. (This duplication is not entirely equivalent to carrying the original 
particle into a new cell with its original weighting factor, N,; the initially identical 
duplicate particles may become randomized, and thus nonidentical, due to 
collisions in the new cell.) 

Hausman and Roberts [4] described a simplified DSMC model of stratified gas 
flow which used Cartesian coordinates and a quasi-gravitational force to mimic the 
centrifugal effects of a rotating gas. For the present work, we have developed a new 
computer code which utilizes cylindrical coordinates r, 8, and z (also see [S]). Our 
computational volume is divided into cells whose boundaries are surfaces of con- 
stant r, 8, and z. We have chosen to use the laboratory, non-rotating reference 
frame, so that no fictitious forces need to be added, and particles travel on straight- 
line trajectories between collisions. The solid obstructions which perturb the gas 
flow in our simulations are assumed to be stationary in the laboratory frame; if they 
rotated it would be necessary to choose a new computational frame of reference in 
which the obstacle is stationary, adding appropriate centrifugal and Coriolis forces 
to our treatment of the particles. 

Hausman and Roberts [4] examined two different sets of boundary conditions, 
neither very realistic for describing a cyclindrical volume of rapidly rotating, 
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strongly stratified gas. In one formulation, there was a solid, specularly reflecting 
boundary at the “bottom” of the computational volume (corresponding to large 
radii) and all other boundaries completely open, with new particles flowing in only 
through one face (the “upstream” boundary) and old particles flowing out of all 
faces except the bottom, as if these were vacuum boundaries. A second formulation 
made all faces reflecting walls, except the upstream and downstream faces, into and 
out of which, respectively, the particles flowed. 

More realistic boundary conditions are used in the present simulations (also see 
[5]). Particles which are inside the computational volume are allowed to leave 
through any boundary. The distribution function, Eq. (4) can be used to calculate 
the expected inward flux of particles through any boundary, assuming the gas on 
the outside of the boundary is well approximated by an unperturbed, isothermal, 
rotational flow. We take the inward molecule flux at any location [2] to be 

where 

F= n(r) o,[exp( -s2) + & s( 1 + erf(s))]/fi, (8) 

s = (v(r) > -fV($ ~~1, (9) 

and ri is the inward unit normal vector of the surface. Since the mean velocity is in 
the +d direction, we have s = 0 for the z and r faces of our volume, and 
s = f Qr/(,,& ud) for the upstream and downstream 8 faces, respectively. The total 
molecular flux through the boundary of any finite-sized cell may be obtained by 
integrating Eq. (8) over the area of that boundary; application of the appropriate 
molecule-to-particle correction factor Nj [Eq. (6)] then tells how many particles we 
need to inject. Formulae derived for the determination of the number of particles 
required to be injected per unit time across each of the six boundaries of the 
computational volume are given in the Appendix. 

The components of particle velocity parallel to a boundary are randomly chosen 
from Gaussians of standard deviation ud and mean value (0, rB, 0); the distribution 
function of velocities normal to a boundary, however, is proportional to 

f(o,) do, a v, exp [- (-&-s)‘] 4. (10) 

For r and z faces, as we have seen, s is zero, and Eq. (10) is easily invertible to give 
velocities from random numbers. For the upstream and downstream boundaries, 
however, s is given by Eq. (9), s = &Or/(fi ud), and the velocities of input particles 
must be chosen by acceptance-rejection methods. Formulae derived for the deter- 
mination of the velocity components and spatial locations for the injected particles 
across each of the boundaries are given in the Appendix. 

The storage requirements of cells and particles make it impractical to model, for 
example, the full volume of a rapidly rotating, strongly stratified gas over a great 
many scale heights, and even modeling a full circumferential annulus generally 
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requires some sacrifice in spatial resolution. However, some interesting situations 
are periodic in 6, as would occur if two, three, or more obstructions were all placed 
at the same radius and evenly spaced along a circumferential annulus. To accom- 
modate these possibilities, the computational code is developed to provide the 
capability of simulating with higher resolution a fraction of a circumferential 
annulus, with periodic boundary conditions for the 8 faces. Instead of putting new 
particles into the upstream face and letting old particles flow out the back, we may, 
if we choose, translate these outgoing particles back to the upstream face, giving 
them the same u,, ue, uZ, r, and z values that they had as they left. The r and z 
boundaries are treated the same as they are for the nonperiodic assumption, 

The addition of a solid obstacle to our simulation complicates the calculations in 
several ways. Most important, an obstacle will deflect any particle which strikes it. 
In order to find the intersection of a particle trajectory with a solid surface, we 
choose an obstacle whose surface can be described by quadric equations (in 
Cartesian coordinates) and utilize well-known formulae for the intersection point(s) 
of a straight line with a quadric surface. When a particle strikes the surface of an 
obstruction, it is diffusely scattered, with an emission velocity appropriate to the 
object’s temperature. If the obstacle is concave in shape, it is possible for a reflected 
particle to strike it several times in one time step, so we check even the post- 
emission trajectory for further reflections. 

Because the gas is likely to show structure on smaller scales near an obstacle than 
far away, the computational code is developed with the capability for specifying 
cells of different sizes in selected regions in order to put added resolution where it 
does the most good. This adds no new conceptual difficulties, as long as the various 
cell volumes are taken into account in our molecule-to-particle ratios [Eq. (6)] and 
our determinations of densities and collision rates [Eq. (7)]. 

III. RESULTS 

Computational studies of the three-dimensional, hypersonic flow of stratified gas 
past an obstacle have been carried out, the gas stratified in a direction transverse to 
the incident mean flow. Different types and shapes of obstacles have been studied 
(e.g., a circular disk, a “long” solid rod, and a “short,” cylindrical pipe with the 
downstream end covered by a flat plate containing an “orifice” of adjustable 
diameter). The Mach number of the incident gas has been varied in the range from 
2 to 6, and different magnitudes of density stratification have been studied. In this 
paper we focus on several representative cases of the computed hypersonic flows, 
leaving other cases of interest to be discussed elsewhere. We limit our discusson 
herein to those computed hypersonic flows with an incident Mach number of M = 4 
and to one type of obstructing object, namely the “short,” cylindrical pipe with the 
downstream end covered by a flat plate containing an “orifice” of adjustable 
diameter. The computed results for hypersonic (M= 4) flows past the “short,” 
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cylindrical pipe are studied in cases for which the diameter of the “orifice” in the 
downstream endplate is varied. 

Figure la shows a schematic of the cylindrical chamber adopted for our com- 
putational volume. The volume (which extends for half a circumference, 0 Q l3 < rc) 
is divided by surfaces of constant Y into 13 stratification layers; each layer is sub- 

a 

X 

b 

FIG. 1. Schematic of the computational chamber with the “short” obstructing cylindrical pipe. The 
pipe’s open end faces into the flow; its downstream end is covered by a flat plate containing an “orifice” 
at its center which may be closed, partially open, or fully open. The pipe of length 1 (= iO0 units) and 
outside diameter d (= 100 units) lies at a radial location r0 ( = 800units) at which the unperturbed gas 
scale height Hand mean free path I are adopted as 50 and 20 units, respectively. A “mirror-image pipe” 
is also sketched at radial location r,, but shifted about the chamber’s central (z) axis in Q by R radians. 
(b) Representative sector-shaped, 
indicated. 

computational subvolume with selected r-stratification layers 
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divided by constant 8 surfaces into “groups” (a total of 72); most groups are sub- 
divided by constant z planes into “blocks” (a total of 116). The blocks are divided 
evenly in z and 8 to give a total of 3000 cells; all of the cells within a single block 
are the same size. Figure 1 b illustrates a representative sector-shaped subvolume of 
the computational chamber, with divisions labeled for selected stratification 
r-layers. Because the significant physical lengths are determined by scale heights 
and mean free paths, and velocity in terms of gas sound speed, all of which may 
vary in actual physical problems, we choose arbitrary units for both size and speed, 
and hence, time. The obstacle is a “short” cylindrical pipe of outer diameter d= 100 
units, inner diameter 99 units, and length 1= 100 units, centered on the y-axis 
(0 = n/2) at a radial location r,, = 800 units from the central (z) axis of the chamber 
(Fig. la). The pipe faces into the flow 
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with the orifice in the downstream endplate completely closed. Comparisons of the 
stratified flow in case (1) with the unstratified flow in “standard” case (3) help to 
isolate important effects resulting from the density stratification of the gas 
(Section IV). 

A. Hypersonic (M = 41, Stratified Flow Past the “Short,” Cylindrical Pipe: “Com- 
pletely Closed” Orifice in the Downstream Endplate (Case 1) 

The effect of the obstructing pipe on hypersonically impinging, stratified 
molecular gas are studied first in the case for which the “orifice” in its downstream 
endplate is completely closed. It is useful to view the resulting three-dimensional 
density distribution and flow field from several different vantage points. Figure 2a 
shows a “side-view,” z-8 projection of the density distribution of the molecular gas 
that lies within the cellular layer centered at mean radius ?= 761 units. This cellular 
layer has a thickness of 27 units, extending from r = 748 to r = 775 units and con- 
stitutes the innermost stratification layer of the five layers that cut through the 
volume of the pipe (750 < r < 850). The dark solid (straight) lines and the first and 
third tick marks on each of the four axes indicate the location of the minimum and 
maximum boundaries of the volume occupied by the pipe (both the length and 
outer diameter of the pipe equal 100 units). The middle tick mark on each of the 
axes indicates the location of the center of the pipe (on the e-axis at 0 = n/2; on the 
z-axis at z = 0). Isodensity contours mark constant levels of molecular gas density. 
Labels on the contours denote the logarithm to the base ten of the number density 
log,,(n/n,.), after reduction by the same (large) scaling factor n, throughout. Isoden- 
sity contours are separated by 0.075 increments of log,,(n/n,). In this projection 
(viewing in a direction perpendicular to both the axis of the pipe and the central (z) 
axis of the computational chamber), strong “pile up” of the molecular gas is evident 
with considerable density enhancement within the pipe (1.51~ 6 < 1.63) and 
directly upstream of it (1.40 < 0 < 1.51) as indicated by the contour levels of 
log,,(n/n,.) = 5.25 and higher. The maximum molecular gas density, 
log,Jn,,,/n,) = 6.54, occurs inside the pipe. Directly downstream (0 > 1.63) the 
molecular gas system is strongly rarefied; note the contours levels lower than 
log,,(n/n,) = 5.25. In this region within one-half pipe length downstream of the 
back endplate, the molecular gas undergoes its minimum density, 
lOg,,(n,i”/n,.) = 4.94. The pipe acts as a strong obstruction to the flow; the strong 
density variation in the molecular gas induced by the pipe spans a range of more 
than an order of magnitude between that in the compressed region upstream and 
within the pipe and that in the rarefied region downstream of the pipe. In fact, the 
computed density contrast nmax/nmin ( 10’6.54 4.94) = 10’.60) is 39.8. Via representative 
z - 0 projections such as this, we can see the reflection symmetry across the 
constant z = 0 midplane which contains the obstructing pipe’s central axis (middle 
tick mark on the z axis). 

Here we re-emphasize the distinction between “computer particles” and 
“molecular gas particles,” each of the former representing Nj of the latter in a given 
celli, the latter constituting the real molecular gas system which is strongly stratified 
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I I I T= 761 b 
a 50 

94 883 
- - 

5.5 
5.70 

- r - 
z - - 

4.9” 

678 
1.34 I I I 1 .*o 

8 (radians) 8 (radians) 

c 
i = 1.48 (radians) 

r 

FIG. 2. Contours of equal “molecule” density resulting from the hypersonic flow of stratified gas 
(case 1) past the obstructing pipe with the “orifice” in the downstream endplate completely closed. 
(a) Isodensity contours in a representative z-6 projection containing the cellular r-stratification layer cen- 
tered at average radius ?= 761. (b) Isodensity contours in a representative r-6 projection containing the 
computational slice, -50 <z < 50, centered on the pipe. (c) Isodensity contours in a representative z-r 

projection containing the computational slice centered at 8= 1.48 just in front of the pipe. Three tick 
marks on each of the four axes in these and subsequent contour maps indicate the location of the center 
of the pipe (middle tick mark) and the maximum and minimum values of the coordinates containing the 
volume occupied by the pipe. Density perturbations are prominent in the obstructed molecular gas in 
the neighborhood of the pipe and within it (Figs. 2a and 2b). Strong “r-asymmetry” in the resultant 
molecular gas density distribution is evident in the (radial) direction of the gradient of density 
stratification (Figs. 2b and 2~). 

in the Y direction. This is illustrated in Fig. 2b; shown is the density distribution of 
the “stratified molecular gas” in an r - 0 projection of the computational volume, 
viewed from the vantage point of a “top-view” perspective. Sketched are isodensity 
contours for the molecular gas that lies between z-heights of -50 and 50 units. This 
r - 8 computational slice contains the pipe. The pipe has a fixed length of 100 units 
(the o-extent of this fixed length [in radians] is a smaller &projection at larger 
radii [r = 850 versus r = 7501). Note the systematic distortion of all isodensity con- 
tours in the vicinity of the pipe. Without the pipe to obstruct the flow, such isoden- 
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sity contours, representing the radial stratification of a uniformly rotating (unper- 
turbed) molecular gas, would appear as horizontal contours in this r - 0 projection. 
Near the pipe, we see that high density contours are drawn inward just upstream, 
while low density contours are drawn outward just downstream, of the pipe. This 
systematic distortion underlines the strong density compression induced within and 
just upstream of the pipe and the strong rarefaction of the molecular gas just 
downstream. At smaller radii directly inward of the pipe, the density compression of 
the molecular gas is not as pronounced, but the enhancement is still detectable as 
far inward as the inner border at r = 678. Note especially that inside the pipe where 
the compression of molecular gas is of greatest strength, there is virtually no radial 
stratification of the gas; collisions with the cylindrical side wall and the’flat back 
wall (endplate with orifice closed [case 11) have truncated virtually all of the gas’s 
rotational motion within the pipe and thus removed the radial dependence of its 
phase-space density [Eq. (4)]. 

The distortion of the radial density stratification of the molecular gas system by 
the obstructing pipe can be viewed in detail through yet a third perspective. 
Figure 2c shows a z-r projection of the molecular gas density distribution in a 
slice of computational volume with 0 thickness of 0.035 radians, centered on 
B= 1.48 radians, just upstream of the leading edge of the pipe (1.51 
radians < 8 < 1.63 radians). The dark, dashed circle delineates the actual circum- 
ference of the pipe; it is drawn as a “dashed” boundary to emphasize that the pipe 
lies entirely behind this slice of computational volume (this computational slice 
does not cut or touch the pipe). In this z-r projection of the region just upstream of 
the pipe, we can see clearly the systematic inward protrusion of isodensity contours. 
Without the pipe to obstruct the flow, such isodensity contours representing the 
r-stratification of a uniformly rotating (unperturbed) molecular gas would appear 
as vertical contours in this z-r projection. The strongest enhancement of molecular 
gas density occurs where the inward protrusion of isodensity contours is largest, 
namely near the z = 0 midplane containing the central axis of the pipe. Note that 
the density enhancement shows reflection symmetry about the z=O midplane. 
Although most pronounced directly in front of the pipe at radii slightly less than 
the radial location of the pipe’s central axis, the enhancement of molecular gas den- 
sity is evident at radii well inward of the pipe, in fact extending all the way to the 
inner border at r = 678. 

We now focus in greater detail on the strong compression and subsequent strong 
decompression of the gas and its distribution in the r, 8, and z directions. Figure 3a 
shows the variation, with respect to 0, of the number density of molecular gas 
logIO[n/n,]) at each of 10 different z-levels, all centered at the same representative 
average radius r= 761. The three tick marks on the horizontal axis denote the 
o-extent of the pipe which is centered at the middle tick mark (0 = 1.57). The den- 
sity peak and trough of molecular gas at each z-level delineates the strong gas com- 
pression within and just upstream of the pipe (the pronounced “mountain” in the 
contour map of Fig. 2a) as well as the gas decompression just downstream of the 
pipe (the broad “valley” in the contour map of Fig. 2a). The strongest compression 
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FIG. 3. Variation, with respect to 0, of the number density (plotted as log,,[n/n,] on the vertical 
axis) of the stratified molecular gas (case l), at each of 10 different z-levels, all centered at the same 
representative average radius: F= 761 (a) and Y = 735 (b). The strong compression, as well as the sub- 
sequent strong decompression, occurs over a distance of several mean free paths of the perturbed 
molecular gas, both within the representative r-stratification layer cutting the volume of the pipe (a) and 
within the next inward r-stratification layer (just inward of the pipe) that does not cut or touch the 

pipe @I. 
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and strongest decompression are found within those z-levels which most fully inter- 
sect the volume of the pipe (Z = 6 and 19). The enhancement in gas density to its 
maximum value (log,,[n,,,/n,.] = 6.54) takes place rapidly, with the sharpest rise 
occurring near the pipe’s upstream end (marked by the first tick mark at t5= 1.51). 
The location of sharpest decline coincides with the pipe’s back wall (endplate with 
closed orifice, marked by the third tick mark [B= 1.63]), with the density 
minimum (lOg,,[n,i”/n,] = 4.94) occurring just downstream [at 8 = 1.691). These 
strong density variations (nmax/nmin = 39.8) induced in the molecular gas by the 
pipe subside rapidly thereafter in the downstream direction, with the gas relaxing 
rather quickly to a density near its equilibrium density (loglO[nequi,/nC] = 5.20) 
within a distance less than four pipe lengths (0 < 2.11) downstream of the pipe’s 
endplate. 

At higher z-levels above the pipe (e.g., Z= 56, 69, 81, 94, 106, and 119 in Fig. 3a), 
the density variations induced in the molecular gas by the pipe are much less 
strong. For example, even in the first z-levels just above the pipe at Z= 56, the 
maximum density compression is only modest (log,O[n,,,/n,] = 5.44); likewise 
modest is the density contrast nmax /n,,,( 10(5.44~ 5.10) = 10°.34) of 2.19. These values 
for maximum density compression and density contrast are smaller than those at 
z-height Z = 6 by factors of 12.6 and 18.2, respectively. 

The distribution of molecular gas in the next inward r-stratification layer, cen- 
tered at r= 735 is shown in Fig. 3b. This r-stratification layer is the closest layer to 
the pipe (inward of the pipe) that does not cut or touch the pipe. Plotted versus 0 is 
the density distribution (log,,[n/n,,]) of molecular gas in this layer, at the same 10 
representative z-levels as in Fig. 3a. We first focus on the lowest z-levels. Most 
notable is the rapid rise in gas density, particularly at the two lowest z-levels (Z = 6 
and 19), which culminates in the sharp density peak (log,,(n,,,/n,.)=5.35) near 
6= 1.48. The major proportion (90%) of this rapid density rise occurs over a 
distance of approximately one pipe length (100 units, 6= 1.34 to 8= 1.48) 
corresponding to several mean free paths of the perturbed molecular gas. We note 
that the mean free path 1 of the perturbed gas in this region of rapid compression 
varies between its unperturbed value, Ebunperturbed = 69.8 units, calculated from 

j.(r) = 4ro) exp [ 
-Q*(r* - r;, 

202 , d 1 
where r= 735, r. = 800, and n(r,) = 20 units, on the one hand, and its minimum 
value Amin = (2 unperturbed n..,rturbedhmax) = 27.8 units on the other. We thus 
recognize this region of rapid density rise as a shock wave in the molecular gas, 
whose thickness is no more than several collisional mean free paths. 

Directly downstream of the pipe the molecular gas undergoes decompression, 
with the decrease from maximum density to unperturbed density occurring over a 
distance of about one pipe length (100 units, I!? = 1.48 to 6= 1.62). What follows is a 
broad trough in the molecular gas distribution extending over a distance of 
approximately 180 units, slightly less than two pipe lengths (6= 1.62 to 6= 1.87). 

581/71/2-2 
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The average collisional mean free path of the decompressed gas in this broad 
trough (loglO(rzmin/nc) =4.90) varies over a range between its unperturbed value, 
I unperturbed = 69.8 unitsy and its maximum value Amax = (~unperturbednunperturbed/nmin) = 

78.4 units. This broad trough of decompressed molecular gas therefore extends over 
a distance corresponding to no more than several collisional mean free paths in this 
low density region. From postshock peak density to minimum density in the broad 
trough, the molecular gas exhibits a total density contrast nmax/rzmin( 105.35/104.90 = 
10°.45) of 2.82. 

At higher and higher z-levels, it is evident in Fig. 3b that the density peak of 
molecular gas occurs further and further downstream. The extent of this 
downstream shift of the molecular gas density peak toward higher z can be more 
clearly appreciated through the perspective of a molecular gas density contour map. 
Displayed in Fig. 4a is one such representative contour map: a z-0 projection of the 
molecular gas density distribution in the r-stratification layer at average radius 
r= 735. Only 15 isodensity contours that delineate the region of moderate to strong 
density enhancement are plotted. The strongest molecular gas compression lies 
along a “bow shock” which is parabolic-like in shape; it bends in the downstream 
direction from its broad base just upstream of the pipe’s front end. At z-levels well 
above (and well below) the pipe near the upper (and lower) boundaries at z = +94 
(and -94) (in Fig. 4a), the oblique bow shock and “density compression ridge” 
make an angle of approximately 30” (and -30”) with respect to the &direction, 
respectively. 

Figures 4b and 4c display z-8 projections of the u, component of velocity and the 
u, component of velocity, respectively, in this same r-stratification layer at r= 735. 
The uZ velocity component (Fig. 4b) attains its maximum value (u,,,, = + 3.25) at a 
location along the oblique density ridge (in Fig. 4a) above the pipe and its 
minimum value ( uSmln = -3.25) along the oblique density ridge (in Fig. 4a) below 
the pipe. The thickness of this shock region over which the strongest density and uZ 
velocity gradients are induced is of the order of a pipe length, which corresponds to 
several mean free paths of the molecular gas (27.8 < IL < 69.8) in this region. 

The isovelocity contours for the u, component of velocity (Fig. 4c) show that the 
entire u, field is negative and thereby directed inward in the (radial) direction of 
gradient of density stratification. A strong radial inflow of molecular gas, induced 
by the pipe, is evident in this r-stratification layer just inward of the pipe (in 
Fig. 4~). The most negative u, values lie along a “valley” which is parabolic-like in 
shape and closely aligned with the density ridge of compressed molecular gas (in 
Fig. 4a). The parabolic-shaped u, valley exhibits negative u, values (-3.25 to 
-5.50) whose magnitudes are greater than those attained by uZ (uZm,, = 3.25, 

U km = -3.25, in Fig. 4b). The most negative u, value (- 5.50) is attained at t7= 1.48, 
just upstream of the front end of the pipe. 

Figure 4d displays an r - 0 projection of the u, velocity component for molecular 
gas that lies between the z-heights of -50 and 50 units. In this perspective, the 
magnitude and extent of the radial inflow induced by the pipe can be examined 
more fully. We see that the radial inflow is indeed strong in front of and inward of 
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FIG. 4. (a) Contours of equal “molecule” density for the hypersonic, stratified flow (case 1) in a z-8 

projection containing the cellular r-stratitication layer at average radius f= 735. The strongest molecular 
gas compression lies along a “bow shock” which is parabolic-like in shape in this projection. 
(b) Isovelocity contours of the v, velocity component for the molecular gas (case 1) in the same 
r-stratification layer at r= 735. (c) Isovelocity contours of the v, velocity component for the molecular 
gas (case 1) in the same r-stratification layer at F= 735. (d) Isovelocity contours of the v, velocity com- 
ponent for the molecular gas (case 1) in the r-0 projected computational slice, - 50 < z Q 50, containing 
the pipe. The bow shock passing through a region has a thickness of several collisional mean free paths 
of the stratified molecular gas in that region. The broadening of the u, minimum with decreasing radial 
position (d) is primarily a result of the increasing collisional mean free path in that direction of the 
gradient of density stratitication. 

the pipe, as was discovered in Fig. 4c. Note, however, that the radial inflow 
becomes even stronger at smaller radial distances. The most negative values 
attained by the u, velocity component occur along a “valley” that extends inward in 
radius from the front end of the pipe. This “Us” valley becomes deeper with decreas- 
ing radial position; values for u, dip as low as -7.6 to -7.9 within the lowest 
contour level near the inner boundary (?= 616). 

The v, valley characterizing the minimum in the u, velocity component broadens 
in its 8 extent with decreasing radial position all the way inward to the inner boun- 
dary (and beyond). This broadening is largely a result of the increasing collisional 
mean free path II of the stratified molecular gas with decreasing radial position. The 
obstructed gas’s mean free path increases globally in the inward radial direction 
much like that of unperturbed gas (when no obstacle is present) and also undergoes 
local variations which are strongest in the neighborhood of the pipe and within it. 
We note that the mean free path appropriate for unperturbed gas in the 
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r-stratification layer at the inner boundary is &,erturbed = 516 units [calculated 
from Eq. (1 l)]. This unperturbed value (at ?= 616 units) is greater by a factor of 
25.8 than that corresponding value for unperturbed gas, ;lunperturbed = 20 units, at the 
reference radius r0 (= 800 units). Note that only a small fraction of the apparent 
broadening is caused by the mapping of the (r-0, cylindrical coordinate) com- 
putational volume onto the Cartesian grid in the display presented (Fig. 4d). Such a 
mapping naturally entails a slight stretching of the d-scale at smaller radii and a 
slight shrinking of the e-scale at larger radii (e.g., as evidenced by the difference in 
spacing between the two sets of three tick marks along the horizontal axes, each 
delineating the same fixed pipe length [of 100 units]). Thus the predominant frac- 
tion of the broadening with decreasing radial position is attributed to the rapid 
increase in the collisional mean free path in that direction. Such broadening effects 
with decreasing radial position, and increasing collisional mean free path, are also 
manifested in the molecular gas density distribution. Indeed, the isodensity contour 
maps of Figs. 2b, 2c, and 8b show that the major enhancement in molecular gas 
density induced by the pipe broadens substantially near the inner boundary there 
(at r= 678). 

It is evident that the radial inflow induced in the molecular gas by the 
obstructing pipe is strong. We seek to gain further insight into this radially driven 
gas inflow and at the same time come to a deeper understanding of the overall 
dynamics of the stratified molecular gas as it impinges hypersonically on the 
obstructing pipe. To do so, we focus on the motion of the gas from the vantage 
point of an observer fixed in the rotating coordinate frame of solid body rotation 
for unperturbed gas (e.g., without the presence of an obstructing pipe). Such an 
observer, rotating about the central z-axis of the computational chamber at the 
angular speed of the unperturbed gas’ solid body rotation, would measure the gas 
motion in terms of a velocity field of “reduced” vector velocities. Each “reduced” 
vector velocity would consist of the perturbed gas’ total (inertial frame) vector 
velocity minus the circular velocity corresponding to solid body rotation at that 
radius. Figures 5a, Sb, and 5c provide three different projections of this “reduced” 
velocity field for gas near the obstructing pipe. Note the reference arrow, of 
magnitude 10 velocity units, at the top of Figs. Sa, 5b, and 5c. Arrows are plotted 
only for those cells whose total computed velocity is different from the “unpertur- 
bed” circular velocity by a significance level of more than two standard deviations. 
With respect to our observer’s rotating reference frame, note that solid-body 
rotating unperturbed gas (without the presence of an obstructing pipe) would have 

FE. 5. Velocity field maps for the stratified molecular gas (case 1) in selected regions of the com- 
putational volume containing the “closed orifice” obstructing pipe, pictured with respect to an observer 
moving at the angular speed of the incident (solid body rotating) mean flow. (a) A representative r-8 
projection of the computational slice centered at average z-height Z = 6. (b) A representative z-0 projec- 
tion of the cellular r-stratification layer centered at average radius ? = 787. (c) A representative z-r pro- 
jection of the computational slice centered at tJ= 1.55. Strong radially driven gas inflow (Figs. 5a and 5c) 

is a major “three-dimensional” characteristic of all the hypersonic, stratitied flows studied when an 
obstructing object is present. 
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zero velocity everywhere, and consequently its arrows would not be plotted. 
Figures 5a and 5b show that the flow is strongly decelerated by the pipe. Further- 
more, we see more fully the extent of the strong radial inflow (Fig. 5a) induced by 
the pipe; its influence is not only partly upstream of the pipe but also well 
downstream and all the way inward to the inner boundary (at r= 583) and beyond. 
The magnitude of this radial component of velocity, v,, is indeed large relative to 
the z component of velocity, v: (Fig. 5~). To be sure, the obstructing pipe induces 
strong systematic motions in the gas; the pipe not only retards the flow in passage 
of gas past the pipe but also strongly drives the obstructed gas radially inward over 
considerable distances. 

The velocity perturbations induced in the gas by the obstructing pipe are shown 
in more detail in Figs. 6a, 6b, and 6c. We display, versus 9, the perturbed velocity 
components, v,, vO, and v= in 10 different r-layers, all at the average z-height Z= 31 
(again vH is prescribed with respect to the observer rotating with the mean flow). 
The systematic depression of the v0 velocity component of the perturbed flow 
(Fig. 6b) toward large negative values reflects the strong retardation of the flow by 
the pipe. The gas within r-stratification layers extending through the volume of the 
pipe (Y= 761, 787, 812, and 837), as expected, undergoes the most prominent retar- 
dation; minimum values for the perturbed vg component are in the range - 19.0 to 
-20.0. A fraction of the gas in these r-layers becomes trapped inside the pipe. Gas 
at radial distances well interior (f = 616, 648, 677, and 707) to the pipe’s radial 
location, as well as exterior (f = 860), also feels prominent retardation in its mean 
flow, with minimum values for the perturbed vH component of - 6.0 to - 9.0, even 
though the pipe itself does not penetrate these r-layers. 

The large, broad depression in the v, velocity component (Fig. 6a) illustrates the 
magnitude of the strong inward-driven flow induced by the obstructing pipe. Its 
magnitude is strongest for the innermost r-stratification layers at radii, r= 616, 648, 
677, and 707, well interior to the radial location of the pipe, with minimum v, 
values in the range of - 6.0 to - 8.0. Note how far downstream the radially driven 
inflow persists, subsiding only by angular position 2.20 radians, corresponding to a 
linear scale of approximately four to five pipe lengths downstream from the center 
of the pipe. In contrast, the v0 depression (Fig. 6b), comparable in magnitude for 
these innermost r-layers (Y = 616, 648, 677, and 707) and much larger in magnitude 
for the r-layers penetrating the volume of the pipe, extends to only about 1.85 
radians, corresponding to a linear scale of approximately two pipe lengths 
downstream of the pipe’s center. 

This broad radial gas inflow (Fig. 6a) is now seen to account for the prominent 
protrusion of high-density gas inward of the pipe (Figs. 2b and 2~). This broad gas 

FIG. 6. Variation, with respect to 8, of the 11, velocity component (a), the u,) velocity component (b), 
and the uZ velocity component (c) for the stratified molecular gas (case 1) in 10 different r-stratification 
layers, all within the same computational slice at average z-height i=31 (midway between the pipe’s 
central axis and the uppermost part of the pipe’s cylindrical surface). The radially driven gas inflow is 
particularly prominent in the inner r-stratification layers (a). 
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density enhancement is a collisional effect, due to the scattering produced when the 
deflected flow interacts with the incoming flow. Note that the gas in r-layers 
penetrating the volume of the pipe (r= 761, 787, 812, and 837 in Fig. 6a) does not 
participate fully in this radial inflow until a 8 location is reached just downstream 
of the pipe (0 > 1.63). A fraction of the gas in these r-layers just upstream of 
8 = 1.63 becomes trapped inside the pipe. Likewise, gas at radii greater than the 
radial location of the pipe (Y= 860) participates in the radial inflow only 
downstream of the pipe, the minimum value of -3.0 for its perturbed u, velocity 
component occurring in the 8 range: 1.70 < 8 < 1.80. 

The increase of the uZ velocity component (Fig. 6c) to moderately positive values 
( +2.0) upstream of the pipe and its subsequent decrease to moderately negative 
values (-1.5) downstream (Y=761, 787, 812, and 837) illustrate the degree to 
which the molecular gas “spills over” the pipe in the z-direction. Note that gas in 
r-stratification layers at radii interior to the pipe’s radial location (J= 616, 648, 677, 
707, and 735) is perturbed similarly in the z-direction and also attains moderately 
positive perturbed ZI; values, particularly gas at r= 707 and 735, even though the 
pipe occupies a radial location (750 < r < 850) exterior to these regions. Note that 
gas at radii (J= 860) greater than the pipe’s radial location is weakly perturbed 
similarly in the z-direction but shifted somewhat downstream. 

The gas velocities at higher and lower z-levels are also intriguing. Figures 7a, 7b, 
and 7c show corresponding curves for the v,, vg, and u, velocity components in the 
same 10 representative r-layers but at average z-height Z= 81, approximately 1.6 
pipe radii (6 to 7 cell widths) above the central plane of the computational volume. 
The moderate depression in the v0 component of velocity (Fig. 7b) shows that the 
mean flow at this z-height is retarded by the pipe, but less strongly than at z-heights 
closer to the central z = 0 midplane of the computational volume. Gas in the inner- 
most five (or six) r-stratification layers undergoes the strongest retardation at this 
z-height. Minimum values for the rfl velocity component are in the range of -5.0 to 
- 6.0 (f = 616, 648, 677, 707, and 735 in Fig. 7b), moderately reduced from the 
range of -6.0 to -9.0 exhibited by gas within the same r-layers at average z-height 
Z = 31 (Fig. 6b). Note that gas within the outer r-stratification layer (f= 860, 
Fig. 7b) at this z-height Z = 81 undergoes no significant retardation in its mean flow. 

Most striking at this z-height is the strong radially driven gas inflow, reflected by 
the strong depression of the perturbed u, velocity component (Fig. 7a), extending to 
considerable distances in the 19 direction downstream of the pipe. The radial gas 
inflow is characterized by a behavior closely similar to that of gas nearer the z = 0 
midplane of the computational volume (e.g., Z= 31, Fig. 6a). The distance in the 
fI-direction over which radial inflow persists at this z-height is also quite impressive, 

FIG. 7. Variation, with respect to 0, of the u, velocity component (a), the t’,, velocity component (b), 
and the u, velocity component (c) for the stratified molecular gas (case 1) in the same 10 r-stratification 
layers as in Fig. 6, but here within the computational slice at average z-height Z = 81 (approximately 1.6 
characteristic pipe radii [six to seven cell widths] above the central axis of the pipe). The radially driven 
gas inflow is still prominent at this z-height well above the pipe. 
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as it was at lower z-heights (e.g., Z= 31, Fig. 6a). Note that the minimum value for 
the u, velocity component lies in the range -6.0 to -7.0 (?= 616 and 648), 
comparable with that of -6.0 to - 8.0 found at z-height Z = 31 (Fig. 6a). 

The maximum value of approximately +3.0 achieved by the v, velocity com- 
ponent (Fig. 7c) indicates the degree of upward expansion of perturbed gas at this 
z-height. Note that this upward expansion is most prominent, with largest 
magnitude and greatest extent downstream, for inner r-stratification layers well 
inward of (and well above) the pipe itself. Comparison of velocity magnitudes in 
Figs. 7a and 7c shows that the perturbed velocity of the gas in the inner r-layers 
at this z-height is directed more nearly in the inward (-r) and upward (+z) 
direction. 

B. Hypersonic (M= 4), Stratified Flow Past the “Short,” Cylindrical Pipe: “Fully 
Open” Orifice in the Downstream Endplate (Case 2) 

The effects of the obstructing pipe on hypersonically impinging, stratified 
molecular gas are now studied in the case for which the “orifice” in its downstream 
endplate is fully open. Again the pipe faces into the flow with its upstream end fully 
open. The “open orifice” in the downstream endplate is “one-sided” in the sense 
that gas passing down the pipe in the direction of the mean flow may enter the 
orifice but gas outside the pipe that impinges upon the downstream endplate from 
behind cannot enter the pipe through (the backside of) the orifice. We focus on the 
case of a “fully opened” orifice with diameter equal to the inner diameter of the pipe 
itself. In an effort to simulate the withdrawal of gas by a scoop, any computer 
particle (and gas molecule) that passes down the pipe and through the orifice is 
assumed to be lost from the computational chamber. 

It is important to consider the stratification of the real molecular gas system and 
focus on similarities and differences that arise in the “closed orifice” and “open 
orifice” cases. Figures 8a and 8b show isodensity contours of the molecular gas for 
the “open orifice” simulation in the same z - 9 and r - 6’ projections as shown for 
the “closed orifice” simulation in Figs. 2a and 2b. Labels on the contours again 
denote the logarithm to the base 10 of the number density, log,, (n/n,.), scaled 
by the same (large) constant scaling factor, n,,, as in the “closed orifice” case. 
Enhancements to high molecular gas density are strong within and upstream of the 
pipe, although the maximum density along the pipe’s interior cylindrical surface is 
somewhat milder in the “open orifice” case (maximum contour level near 6.09 in 
Fig. 8a) than that in the “closed orifice” case (maximum contour level of 6.54 in 
Fig. 2a). The density depression behind the pipe is just slightly lower in the “open 
orilive” case (minimum near 4.90, Fig. 8a) than that in the “closed orifice” case 
(minimum of 4.94, Fig. 2a). Thus despite the fact that the “open orifice” case 
represents the extreme case of minimum impedance for the flow (maximum 
withdrawal of gas), the variation of molecular gas density between maximum and 
minimum values is still of a magnitude approximately 40% that between the 
corresponding maximum and minimum values for the “closed orifice” case. High 
density contours at high r-stratification layers (Fig. 8b) are strongly deflected 
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FIG. 8. Contours of equal “molecule” density for the hypersonic flow of stratitied gas (case 2) past 
the obstructing pipe with the “orifice” in the downstream endplate fully open. (a) Isodensity contours in 
the same z-0 projected cellular r-stratitication layer centered at average radius r= 761, as in Fig. 2a. 
(b) Isodensity contours in the same r-0 projected computational slice, - 50 <z < 50, containing the pipe, 
as in Fig. 2b. This case 2 represents the case of minimum impedance for the flow (maximum withdrawal 
of gas); yet the density perturbations are still prominent and are of a magnitude approximately 40% that 
in case I which represents the case of maximum impedance for the flow (no withdrawal of gas). 

inward in radius by the influence of the obstructing pipe and replace lower density 
contours in the region within and upstream of the pipe, whether or not the orifice is 
completely closed (Fig. 2b), partially open, or fully open (Fig. 8b). Note, however, 
that gas inside the “open orifice” pipe retains much of its radial stratification 
(Fig. 8b) in contrast to that for gas in the “closed orifice” case (Fig. 2b). 

In the “open orifice” case, prominent retardation of gas still occurs in r-layers 
cutting the volume of the pipe, with a depression in the perturbed u, velocity com- 
ponent to values of - 13 to - 16 (f= 761, 787, 812, and 837). The magnitude of 
this o, perturbation is still 70% to 80% that found in the “closed orifice” case 
(minimum values for ug of - 19 to -20, Fig. 6b). At r-layers both interior and 
exterior to the pipe, the ug component shows only a weak depression to values of 
- 3.0 to -4.0, except for the r= 735 layer just interior to the radial location of the 
pipe where the retardation of the gas is somewhat stronger (ue depression to values 
near - 6.0). 

Figures 9a, 9b, and 9c display the variations, with respect to 0, of the u, velocity 
component at average z-height Z = 31, the u, velocity component at average 
z-height Z = 8 1, and the u, velocity component at average z-height Z = 81, respec- 
tively, for gas in the same 10 representative r-stratification layers as shown for the 
“‘closed orifice” case in Figs. 6a, 7a, and 7c. Most notably, the radially driven inflow 
induced in the gas by the obstructing pipe is prominent in all 10 r-stratification 
layers (Fig. 9a), just as in the “closed orifice” case (Fig. 6a). Both the magnitude of 
the depression in u, velocity component and the broad e-extent of the u, depression, 
over which the effect of radial inflow is significant, do not change greatly with 
z-height (e.g., Z= 31 [Fig. 9a] vs z= 81 [Fig. 9b]), much like the u, depression in 
the “closed orifice” case (e.g., 5 = 31 [Fig. 6a] vs Z = 81 [Fig. 7a]). A large u, 
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0 (radians) 

0 (radians) 
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depression (minimum of -4.5 [Fig. 9a]) still occurs in those r-stratification layers 
at radii interior to the pipe’s radial location. This large u, depression has a 
magnitude of approximately 60% that in the “closed orifice” case (minimum u, of 
-7.5, Fig. 6a). The broad &extent of the u, depression is still much greater than the 
o-extent of the ue depression, the latter representing the region over which retar- 
dation of the mean gas flow by the obstructing pipe is strong. 

Figure 9c shows that the “spill over” of gas in the z direction is lessened 
somewhat from that experienced for the “closed orifice” obstructing pipe. Here the 
u, velocity component at z-height Z= 81 exhibits a positive peak of magnitude 
approximately 2.0 in the region just above the obstructing pipe and at radii interior 
to its radial location. This uZ peak is approximately two-thirds the magnitude of the 
U, peak of 3.0 at the same z-height Z = 8 1 in the “closed orifice” case (Fig. 7~). With 
the orifice in the downstream endplate fully open allowing substantial gas 
withdrawal, there is a much lower pressure maximum within and just upstream of 
the pipe, resulting in much less splattering of gas upward (and downward) in the z 
direction in the region directly upstream of the pipe and at z-heights above (and 
below) the pipe. Thus for the “open orifice” case, there is less gas spilling over (and 
under) the pipe at positive (and negative) z-heights. 

In the region just downstream of the pipe at z-height 2 = 31, the u, component of 
velocity sharply decreases through negative values, reaching a minimum of 
approximately -3.0. The resulting uZ downflow is of a magnitude approximately 
double that for the “closed orifice” case (minimum value - 1.5 in Fig. 6~). This 
stronger negative U, downflow of gas from positive z-heights (as well as stronger 
positive uZ upflow from negative z-heights) in the “open orifice” case is indicative of 
the more substantial gas replenishment taking place in the low-pressure region just 
downstream of the pipe, itself a consequence of the substantial gas withdrawal 
through the pipe’s fully open (“one-sided”) orifice. 

IV. CONCLUSIONS AND DISCUSSION 

The computational simulations we have carried out, modeling the hypersonic 
interaction of a rarefied, stratified gas with an obstacle comparable in size to the 
gas scale height and mean free path, show several common major characteristics 
despite differences in Mach number, gas density scale height, and shape of 
obstructing object. First and foremost is the strong and extensive net inward 
motion induced in the scattered gas (Figs. 4c, 4d, 5a, 5c, 6a, 7a, 9a, and 9b). This 
radial inflow, prominent not only in the neighborhood of the obstacle and 

FIG. 9. Variation, with respect to 0, of the o, velocity component at z-height i= 31 (a), the v, 
velocity component at z-height Z = 81 (b), and the v, velocity component at z-height Z= 81 (c) for the 
stratified molecular gas (case 2) in the same 10 representative r-stratification layers as in Figs. 6a, 7a, and 
7c, respectively. Despite the fact that this “open orifice” pipe represents the case of minimum impedance 
for the flow (case 2) the radially driven gas inflow induced is still quite prominent (Figs. 9a and 9b). 
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downstream from it but also at considerable distances radially inward from it and 
at z-heights well above and below, is an important major characteristic common to 
all the hypersonic, stratified flows studied, regardless of whether the object is a flat 
plate, a “long” solid rod, or a “short,” cylindrical pipe. In the case of the “short,” 
cylindrical pipe, whose projected (effective obstructing) surface area normal to the 
incident flow can be varied, the radial inflow is still prominent even when the orifice 
in the pipe’s downstream endplate is “fully open.” This case of “fully open” orifice 
has a projected surface area normal to the incident flow of only a few percent (2%) 
the total pipe cross section, contributed entirely by the circumferential rim of the 
pipe, and represents the limiting case of “minimum gas impedance” (and maximum 
withdrawal of gas). Nevertheless the magnitude of the radial inflow induced is still 
60% that in the limiting case of “maximum impedance” with orifice “completely 
closed.” 

The strong radial inflow is a striking “three-dimensional” effect induced when 
highly stratified gas impinges upon an obstacle. If it were not for the presence of the 
obstacle, the gas would undergo uniform rotation about the central z-axis of the 
cylindrical computational chamber. In such a situation, the pressure force of the 
radially inward directed pressure gradient that maintains the strong radial density 
stratification would be exactly in balance with the centrifugal force associated with 
purely circular motion of the gas. However, with the obstacle present, the gas is 
obstructed and undergoes strong deceleration in the circumferential direction of the 
mean flow; this induces a change in the radial balance of forces near the obstructing 
object. The centrifugal force of the decelerated gas is substantially reduced below 
that required to balance the strong, inward pressure gradient force of the otherwise 
unperturbed stratified gas. It is this resulting imbalance of radial forces induced in 
the highly stratified gas by the obstructing pipe that drives the strong inflow of gas 
radially inward. 

A second major characteristic common to all the hypersonic, stratified flows 
studied is the striking “r-asymmetry” present in the resultant three-dimensional 
density distribution of the obstructed molecular gas. The space-averaged dis- 
placement of obstructed stratified gas is predominantly in one direction-the 
inward radial direction. Gas at higher r-stratification layers is redistributed to lower 
r-stratification layers in the vicinity of the obstacle (cf. Figs. 2b, 2c, and 8b). This is 
the case even for gas at radial locations greater than that of the pipe. The 
prominence of the “r-asymmetry” induced in the resultant density distribution is 
directly related to the strength of the pressure gradient-driven radial gas inflow 
(cf. Figs. 2b and 4d). 

In contrast, a characteristic “z-symmetry” is manifested in the resultant three- 
dimensional density distribution about the z=O midplane containing the central 
axis of the pipe (cf. Figs. 2a, 2c, 4a, and 8a). This “reflection symmetry” with respect 
to the z-direction is also a manifestation shared by the resultant velocity field of 
obstructed gas (cf. Figs. 4b, 4c, 5b, and 5~). Such “z-symmetry” constitutes a third 
major characteristic common to the hypersonic, stratified flows studied, for which 
the obstructing object itself is symmetric with respect to the z = 0 midplane. 
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Deeper understanding can be achieved through comparisons of the hypersonic, 
stratified flows in cases 1 and 2, which are our primary focus in this paper, and 
corresponding hypersonic, “unstratified” flows, for which we have also carried out 
computational studies. In the “unstratified cases, the three-dimensional flow is 
directed along a rectilinear tube past the obstructing pipe. In the Cartesian 
geometry of the tube, the cylindrical pipe is aligned so that its central axis coincides 
with the mean flow direction along the tube. The computed results show that both 
r-6 and z-0 projections of the resultant gas density distribution exhibit reflection 
symmetry about the projected axis of the pipe and that the isodensity contours in 
an r-0 projected computational slice are closely coincident with those in a z-8 pro- 
jected computational slice located at the same distance from the pipe’s central axis. 
Indeed, the incident unstratified flow produces a resultant gas density distribution 
which exhibits rotation symmetry about the central axis of the pipe. To be sure, in 
an r-z projected computational slice just upstream of the pipe at the same location 
as that of Fig. 2c, the resultant density distribution for incident unstratified flow 
exhibits nearly circular isodensity contour levels centered on the pipe’s central axis, 
quite different from the set of nearly vertical isodensity contours with inward- 
perturbed displacements for the stratified flows studied (cf. Fig. 2~). This is in 
striking contrast to the computed results for hypersonic, stratified flows which show 
that such “rotation-symmetry” about the pipe’s central axis is washed away and 
transformed into “r-asymmetry” in the direction of the gradient of density 
stratification (Figs. 2b, 2c, and 8b). The magnitude of the “r-asymmetric” displace- 
ment of a contour level is proportional to the degree to which obstructed gas in 
that stratification layer is deflected radially inward by the strong radial pressure 
gradient. 

It suffices to summarize the computed results for unstratified flows in one 
representative case, adopted as a “standard” of comparison: hypersonic, 
“unstratified” flow past the “short,” cylindrical pipe with orifice in the downstream 
endplate “completely closed” (case 3). Neither a z-8 projection nor an r-8 projection 
of the gas density distribution for the unstratified flow is presented herein in a 
separate figure; contour levels in “both” types of projections for unstratified case 3 
are nearly identical to those in equivalent z-6 projections for stratified case 1. For 
example, in a z-0 projection equivalent to that in Fig. 2a, the gas attains maximum 
and minimum densities at approximately the same locations respectively as for the 
stratified flow in case 1; the computed density contrast of 40.7 for the incident 
unstratified flow (case 3) is only slightly greater by a few percent (2-3%) than that 
factor of 39.8 in density contrast computed for the stratified flow (case 1). In a z-8 
projected computational slice, equivalent to that in Fig. 4a, the computed density 
contrast is 2.92 in case 3, different by only a few percent (4%) from the 
corresponding value of 2.82 computed in case 1. Note though in this latter com- 
putational slice that the maximum and minimum (and average) densities are higher 
than those attained in stratified case 1 (Fig. 4a) by a factor of 2.86. This difference 
in molecular gas density between stratified and unstratified flows is attributed to the 
overall depletion of molecular gas within the stratification layer at J= 735 in 
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stratified case 1, resulting from the large radial inflow induced in the stratified 
molecular gas there that carries a significant fraction of the gas to inner radial 
locations. 

For the unstratified flow in case 3, the “bow shock” and “density ridge” exhibit 
the characteristic shape of a paraboloid of revolution with principal axis of 
rotation-symmetry coincident with the central axis of the pipe. In a z-8 projected 
computational slice at average radius r= 735, equivalent to that in Fig. 4a, this bow 
shock and density ridge bend downstream less rapidly, making an oblique angle of 
magnitude close to 45” with respect to the o-direction at the upper and lower boun- 
daries (Z= +94), as compared to that of 30” for the stratified flow in case 1. Note 
in an r-0 computational slice, such as that in Figs. 2b and 8b, that this bow shock 
and density ridge for the stratified flow are largely washed out and masked against 
the strongly stratified density background. 

Comparisons of the velocity fields in the stratified and unstratified cases further 
emphasize the similar common characteristics as well as the important differences. 
The velocity field for unstratified flow (case 3) exhibits rotation symmetry about the 
central axis of the pipe. The component of velocity perpendicular to the pipe’s cen- 
tral axis, and directed outward from it, attains its maximum values along the 
paraboloid-shaped oblique bow shock and density ridge, which engulfs the pipe 
from the upstream direction and whose axis of revolution lies coincident with the 
pipe’s central axis. Isovelocity contour maps for the unstratified flow in z-9 projec- 
ted computational slices reveal isovelocity contours closely coincident with those in 
corresponding z-0 computational slices for the stratified flow (e.g., Fig. 4b). The 
magnitudes of the maximum and minimum u, velocities (usmax = 2.58 and 
UZrn,” = -2.42), attained along the oblique bow shock and density ridge just above 
and below the pipe, respectively, are somewhat lower by approximately 75% than 
those for the stratified flow in the z-8 projected computational slice in Fig. 4b 
(u,,,, = 3.27 and vzmln = -3.44). In striking contrast, the u, velocity field for the 
stratified flow attains its greatest negative values along a locus that extends almost 
radially inward from the front end of the pipe. The locus of greatest negative (u,/uO) 
values makes an angle of 75”-90” with respect to the 0 direction, all the way inward 
to a radial position of 620 units, with little or no bending into an oblique orien- 
tation, unlike that oblique shock for the computed unstratified flow (case 3). Note 
that the flow is redirected sharply inward in passage across this “shock” locus (cf. 
Figs. 4d and 5a), even though the corresponding density enhancement across the 
locus is largely masked within the strongly stratified density background. 

These studies of hypersonic gas flows past an obstacle in a rarefied, strongly 
stratified medium have been made possible through the development of our 
“N-body” computational code based on Monte Carlo techniques. Improvements in 
the computational code over an earlier version described by Hausman and Roberts 
[4] include: (i) refinements toward more realistic hypersonic, rotating, stratified 
flows as well as hypersonic non-rotating, unstratified flows, (ii) the formulation of 
the computational problem for rotatin,, 0 stratified flows in terms of cylindrical coor- 
dinates instead of Cartesian coordinates, (iii) the replacement of artificially 
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simulated centrifugal forces (in Cartesian geometry) by appropriate inclusion 
of such forces for the rotating, stratified flows, (iv) variable computational 
cell volumes for higher resolution in selected regions near the obstacle, and 
(v) improved treatment of the physical boundary conditions. The “N-body” 
computational code exhibits capabilities beyond currently available continuum 
codes in simulating the flows in rarefied and quasi-rarefied/continuum regimes, and 
our present study exploits these unique capabilities to describe the stratified gas 
flows in and around representive obstacles in these flow regimes. The “short” 
cylindrical pipe, with open end facing directly into the flow serves as a useful model 
of impact probes and scoops in gas centrifuges. 

The complicated nature of the strongly stratified gas flows studied in this paper, 
quite apart from its details, indicates that short scale height systems interacting with 
finite-sized solid obstacles cannot be effectively modeled in detail by two-dimen- 
sional calculations. Figures 2a-2c, 3a, 3b, 4a, 8a, and 8b demonstrate how the den- 
sity varies independently in all directions and shows no simplifying symmetries 
which might allow the problem to be recast into two dimensions. Perhaps the most 
obvious “three-dimensional” effect of the interaction of short scale heights with 
intermediate mean free paths is the net inward motion of the scattered gas. We have 
seen in regions inward of the pipe that the velocity is more nearly radial than axial 
(cf. Figs. 4b4d, 5a, 5c, 6a, 6c, 7a, 7c, and 9a-9c). 

Based upon the results of our simulations, we have predicted several general 
effects that obstructed flow in a highly stratified medium might produce. Are these 
predictions subject to- experimental test? The local density perturbations of the 
molecular gas shown in Figs. 2a-2c, 3a, 3b, 4a, Sa, and 8b might in fact be very dif- 
ficult to map in a real system. The exponential dependence upon radial location 
tends to mask all but the strongest perturbations (cf. Figs. 2b, 2c, and 8b), unless 
extremely accurate positioning is available for quite small measuring devices. The 
velocity fields hold out more hope, however. In particular, the radial motion (cf. 
Figs. 4c, 4d, 5a, 5c, 6a, 7a, 9a, and 9b) of the inward-driven gas and corresponding 
radial mass flux are important model results for which unambiguous tests should be 
possible. To be sure, the effects of a somewhat larger obstacle (compared to either 
gas scale height or collisional mean free path) would be expected to enhance these 
systematic motions as well as the density perturbations induced in the gas. 

We believe that the computational algorithm adopted for our simulations, based 
on Monte Carlo particle dynamics, is a good choice for modeling the inter- 
mediate-l regime of interest here. The main problems arising from its use are spatial 
resolution and computer time requirements. The computational cells used to predict 
particle collision rates, local density, and velocity fields are of size 25 x 25 x 12.5 
(r x 8 x z, units3) in regions where the highest cellular resolution is desired, only a 
factor 4 to 8 times smaller along an edge than the diameter and length of the pipe 
itself (both 100 units). In a short-A gas this would give ample reason to fear that we 
are washing out small-scale structure and smoothing our shocks. However, we have 
seen that much of the interesting, potentially observable structure is found at radii 
inward from the pipe, where the collisional mean free path 2 is 20 units or longer 
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(much longer in the innermost r-layers; e.g., ELunperturbed = 516 units in the 
r-stratification layer at F= 616). We assert that the gas cannot show meaningful 
structure on scales much smaller than the lesser of 1 or H, and that our spatial 
resolution is therefore adequate for these regions. We predict, therefore, that the 
high-density ridges seen in the computations are probably not narrow shocks and 
very likely look much as we have depicted them. 

However, the mean free path is much shorter than 20 units in the outermost 
r-stratification layers. It is certainly possible that structure should develop here 
which is much smaller than our cell sizes and is smoothed into invisibility by the 
course grid. Related to this is the fact that the collision time scale in these cells is 
much shorter than our computational time steps, so most particles near the outer 
boundary can be expected to experience several collisions per time step. These will 
completely randomize and isotropize particle velocity dispersions while preserving 
the mass, momentum, and energy of each cell as a whole. But this is just the effect 
we expect in this short-d, near-continuum regime, so the high collision rate 
apparently introduces no new biases (as long as we are simulating only time- 
invariant models). 

Because of the large cell sizes (compared to 1) in the outermost r-stratification 
layers, we are not confident that the relative smoothness of these outer regions is 
realistic. Simulations with much smaller cell sizes here, and consequently larger 
numbers of particles, would be required to confirm or deny our results. 
Nevertheless, where we “do” see structure, at the radial location of the pipe and 
inward, the mean free path is long enough and the collision rate small enough that 
we feel confident of having an accurate portrayal. 

A problem common to all particle representations of gases is that estimates of 
density, velocity, etc., in any volume element are subject to Poisson statistics with 
relative error proportional to the inverse square root of particle number. Good 
determination of local values, therefore, demands very many model particles. 
Unlike deterministic particle-collision models, whose computation time goes up 
with the square of particle number, the Monte Carlo method described in Section II 
requires computation time linearly proportional to particle number (if the mean 
free path is fixed). If the system modeled is time-independent, we can get equivalent 
statistics (and computation time) by putting a great many particlesinto the system 
at once or integrating the effects of fewer particles over numerous time steps (the 
approach taken here). This is strictly true only if the number of particles is sufficient 
that a statistically significant number of collisions occurs in each cell during each 
time step. Toward the very inner radii of the computational volume, this may not 
be the case. 

The computation time of the Monte Carlo algorithm is proportional to the 
collision rate per molecule, which can get uncomfortably high at the outer edge of a 
short scale height model. As a consequence, the Monte Carlo particle dynamics 
approach seems limited to regions 10 or fewer scale heights across, inadequate to 
model an entire gas centrifuge, for example. However, the high collision rate regime 
is precisely where the standard equations of hydrodynamics become appropriate, so 
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it may be possible to write a hybrid computer algorithm, which uses regular 
hydrodynamics in high density regions and particle dynamics in lower density 
regions. We also speculate that model “impact probes” and “scoops” of more 
realistically intricate geometries and shapes than the “short,” cylindrical pipe 
studied here (with adjustable diameter of orifice in the downstream endplate) may 
be computationally feasible and might lead to still more complex and interesting 
predictions. 

APPENDIX 

After making the molecule-to-particle substitutions [Eq. (6)], we derive the rate 
at which particles flow into each block of equal-sized cells which lie along the 
outermost (r = constant z R) boundary of our volume: 

AN exp(Q2R2/2vi) 
-- 
At P-nznek’ zvd [exp(Q2R2/2vi) - exp(S22rfJ2v2)]’ (AlI 

where nZ and n, are the number of z divisions and 8 divisions, respectively, which 
divide the block into cells, k’ is the desired average number of particles per cell, and 
rin is the radius of the inner boundary of that block of cells (not the inner boundary 
of the whole computational region). The 8 and z coordinates at which each particle 
passes the (r = R) boundary may be randomly chosen between the upper and lower 
limits which define the cell-block’s 0 and z boundaries. The 8 and z velocity com- 
ponents of each entering particle are determined from normally distributed random 
numbers with standard deviations of vd and mean values of QR and 0, respectively. 
The r velocity component of each entering particle is randomly chosen by 
integrating and inverting Eq. (10) with s = 0: 

v,= -o,J--21n R,, (A21 

where R, is a random number chosen from a uniform distribution between 0 and 1. 
At the innermost boundary, where r = rmin, a similar input rate formula holds for 

each block of identical cells: 

(A3) 

where rout is the outer r boundary of this cell-block. The r, 8, and z components of 
input velocity for each new particle are chosen as described above, except that the 
mean l3 velocity is Rr,,,i,, and v, is always positive. 

For blocks of cells facing the top or bottom boundaries of our volume (z = z,,, 
or z = z,,,~“), the particle input rate is simply expressed: 

AN, _ n,k’v, 

~-&AZ,.’ 
(A4) 
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where AZ, is the z-height of any single cell in the block. The 0 coordinate at which 
each particle crosses the z boundary can again be randomly chosen between the 0 
limits of the block, but the r coordinate must be weighted toward high values to 
reflect the radial dependence of the incoming flux. It turns out that, in order to 
reproduce the density distribution of Eq. (5) for incoming particles, each particle’s 
radial location should be chosen by the algorithm 

r =* [ln{ R,Jexp(Q2r2 d2~~) - exp(Q2rfn/2u$] + exp(Q2rFJ2vi)}] lj2, (~45) 

where R,/ is a random number from a [0, l] uniform distribution, and rin and rout 
are the inner and outer radii of this cell block. After r is chosen, the 8 and r velocity 
components are chosen from normal distributions with standard deviations ud and 
mean values fir and 0, respectively. The z velocity is given by Eq. (A2), with the 
sign chosen to assure that the new particles are entering, not leaving the boundary. 

Blocks of cells facing the upstream boundary (0 = constant = emin) experience a 
particle inflow rate calculated from 

AN, _ Qn,k’ 
- - 2 {exp(fJ2rL 
At ‘ 

/%3Cl+ erfVJroutlJZ ~~11 

- expW2rfn/2u:)[ 1 + erf(Qr,,/* u,)]} 

X [exp(Q2f$,/2u~) - exp(Q2rfJ2u2)] -I, (Ah) 

where AO,. is the &length of each cell in the block. The z coordinate at which each 
particle crosses the 8,,, boundary may be randomly chosen between the block’s 
z-limits. It is more complicated to choose the radius of incoming particles. If we 
define x = Qr/& url, the radial distribution of particles entering the upstream face 
is proportional to 

f(x)dx cc [l +&xexp(x2)(1 +erfx)] dx. (A7) 

This expression cannot be integrated and inverted analytically, so values of x, and 
hence r, must be chosen by acceptance-rejection methods. Once we choose r, the 
distribution of probable 8 velocity components is given by 

f(uo) du, cc Iv& exp[ - (ug - f2r)2/2uz] du,. WI 

This also is uninvertible, and u0 must also be chosen by acceptance-rejection 
methods. The r and z velocity components are both normally distributed around 
means of 0 with standard deviations of ud. 

Usually, very few particles can be expected to enter the downstream face 
(0 = e,,,) of the computational volume. The input rate is given by the formula 
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- exp(fi2riL/%X1 - erfWoutlfi 01 > 
x [exp(Q2rz,,/2u$) - exp(Q2rf,/2u~)] -‘. (A91 

If this rate is not negligibly small for a given block of cells facing the downstream 
boundary, the coordinates and velocities of the new particles are chosen by the 
same methods described for the upstream face, except the expression which must be 
used to choose r (again by acceptance-rejection methods) is 

f(x) dx a [l -&xexp(x2)(1 -erfx)] dx. (AlO) 

The inner r boundary of our computational volume may be treated one of three 
ways: an open surface with inward flux as just described (and adopted in most of 
the cases considered), a surface of zero area as rmin goes to zero (with no flux in or 
out, of course), or a solid, reflecting wall. This last option permits us to 
approximately describe the mechanical axis around which a strongly stratified gas 
might undergo rapid rotation (e.g., as in a gas centrifuge). The solid surface is 
assumed to be a non-rotating diffuse scatterer; that is, all particles which strike it 
are reemitted in a new, randomly chosen direction, with no mean rotation, and 
velocities chosen appropriate to the surface’s temperature, which need not equal the 
rotating gas’s temperature. 
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